another
parent
9d509ab8c7
commit
c8439445f0
|
@ -237,7 +237,7 @@ class eNoseTrainer:
|
|||
'dropout': tune.choice([0.05, 0.15, 0.3]),
|
||||
'lr': tune.choice([0.01, 0.005, 0.001]),
|
||||
'batch_size': tune.choice([16, 32, 64]),
|
||||
'epochs': epochssample_space
|
||||
'epochs': epochs
|
||||
}
|
||||
total_space = (3*3*3*2*3*3*3*3)
|
||||
|
||||
|
@ -492,6 +492,7 @@ class eNoseTrainer:
|
|||
self.saveCheckPoint()
|
||||
|
||||
sample_size = 50000
|
||||
epochs = 50
|
||||
self.loader.smooth = None
|
||||
self.loader.reset()
|
||||
for window in windows:
|
||||
|
@ -530,10 +531,10 @@ class eNoseTrainer:
|
|||
self.logger.debug(f"Y_train_sample: {Y_train_sample.shape}")
|
||||
self.logger.debug(f"Y_test_sample: {Y_test_sample.shape}")
|
||||
|
||||
optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample)
|
||||
optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=epochs//3)
|
||||
|
||||
self.logger.info(f"Training Model {model_id} with {model_params}")
|
||||
optimized_model.fit(X_train, Y_train, epochs=model_params['epochs'], batch_size=model_params['batch_size'], verbose=1)
|
||||
optimized_model.fit(X_train, Y_train, epochs=epochs, batch_size=model_params['batch_size'], verbose=1)
|
||||
|
||||
Y_train_pred = optimized_model.predict(X_train)
|
||||
Y_test_pred = optimized_model.predict(X_test)
|
||||
|
@ -606,10 +607,10 @@ class eNoseTrainer:
|
|||
self.logger.debug(f"Y_train_sample: {Y_train_sample.shape}")
|
||||
self.logger.debug(f"Y_test_sample: {Y_test_sample.shape}")
|
||||
|
||||
optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample)
|
||||
optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=epochs//3)
|
||||
|
||||
self.logger.info(f"Training Model {model_id} with {model_params}")
|
||||
optimized_model.fit(X_train, Y_train, epochs=model_params['epochs'], batch_size=model_params['batch_size'], verbose=1)
|
||||
optimized_model.fit(X_train, Y_train, epochs=epochs, batch_size=model_params['batch_size'], verbose=1)
|
||||
|
||||
Y_train_pred = optimized_model.predict(X_train)
|
||||
Y_test_pred = optimized_model.predict(X_test)
|
||||
|
|
Loading…
Reference in New Issue