diff --git a/TrainerClass.py b/TrainerClass.py index b778d51..7f349f1 100644 --- a/TrainerClass.py +++ b/TrainerClass.py @@ -237,7 +237,7 @@ class eNoseTrainer: 'dropout': tune.choice([0.05, 0.15, 0.3]), 'lr': tune.choice([0.01, 0.005, 0.001]), 'batch_size': tune.choice([16, 32, 64]), - 'epochs': epochssample_space + 'epochs': epochs } total_space = (3*3*3*2*3*3*3*3) @@ -492,6 +492,7 @@ class eNoseTrainer: self.saveCheckPoint() sample_size = 50000 + epochs = 50 self.loader.smooth = None self.loader.reset() for window in windows: @@ -530,10 +531,10 @@ class eNoseTrainer: self.logger.debug(f"Y_train_sample: {Y_train_sample.shape}") self.logger.debug(f"Y_test_sample: {Y_test_sample.shape}") - optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample) + optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=epochs//3) self.logger.info(f"Training Model {model_id} with {model_params}") - optimized_model.fit(X_train, Y_train, epochs=model_params['epochs'], batch_size=model_params['batch_size'], verbose=1) + optimized_model.fit(X_train, Y_train, epochs=epochs, batch_size=model_params['batch_size'], verbose=1) Y_train_pred = optimized_model.predict(X_train) Y_test_pred = optimized_model.predict(X_test) @@ -606,10 +607,10 @@ class eNoseTrainer: self.logger.debug(f"Y_train_sample: {Y_train_sample.shape}") self.logger.debug(f"Y_test_sample: {Y_test_sample.shape}") - optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample) + optimized_model, model_params = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=epochs//3) self.logger.info(f"Training Model {model_id} with {model_params}") - optimized_model.fit(X_train, Y_train, epochs=model_params['epochs'], batch_size=model_params['batch_size'], verbose=1) + optimized_model.fit(X_train, Y_train, epochs=epochs, batch_size=model_params['batch_size'], verbose=1) Y_train_pred = optimized_model.predict(X_train) Y_test_pred = optimized_model.predict(X_test)