enose_2025/TrainerClass.py

422 lines
18 KiB
Python
Raw Normal View History

2025-03-09 04:22:15 -03:00
import numpy as np
import pandas as pd
import tensorflow as tf
2025-03-13 17:51:13 -03:00
import matplotlib.cm as cm
2025-03-09 04:22:15 -03:00
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['text.usetex'] = True
2025-03-10 19:34:13 -03:00
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.model_selection import StratifiedGroupKFold, StratifiedShuffleSplit, GridSearchCV
2025-03-09 04:22:15 -03:00
from sklearn.metrics import mean_squared_error, mean_absolute_error
2025-03-10 19:16:11 -03:00
from sklearn.preprocessing import MinMaxScaler
2025-03-09 04:22:15 -03:00
from xgboost import XGBRegressor
# from ray import tune
# import ray
# from keras.callbacks import TensorBoard
# from keras.models import Sequential
# from keras.callbacks import EarlyStopping
# from keras.layers import Dense, BatchNormalization, Dropout
# from kerastuner.tuners import RandomSearch, Hyperband, GridSearch
from datetime import datetime
import enlighten
import logging
import zipfile
import random
import joblib
import pickle
import time
import json
import os
def get_seed():
return random.randint(0, 2**32 - 1)
class eNoseTrainer:
2025-03-13 17:51:13 -03:00
def __init__(self, loader, test_size=0.2, debug=False):
2025-03-09 04:22:15 -03:00
self.ledger = pd.DataFrame(columns=["node", "ts", "Dataset", "Samples", "Target", "Train Size", "Train Ratio", "Model", "Params", "Ratio", "Train mse", "mse", "mae", "rmse"])
self.loader = loader
self.name = self.loader.label_file
self.state = dict()
os.makedirs(self.name, exist_ok=True)
self.start = int(time.time())
log_format = '%(asctime)s | %(levelname)-8s | %(name)-15s | %(message)s'
date_format = '%Y-%m-%d %H:%M:%S'
logging.basicConfig(format=log_format, datefmt=date_format)
target_log = '{}/load-{}.log'.format(self.name, self.start)
fh = logging.FileHandler(target_log)
self.debug = debug
self.logger = logging.getLogger("eNoseTrainer")
if self.debug:
self.logger.setLevel(logging.DEBUG)
fh.setLevel(logging.DEBUG)
else:
self.logger.setLevel(logging.INFO)
fh.setLevel(logging.INFO)
self.logger.addHandler(fh)
self.ratio = test_size
self.loader.stats()
self.loadCheckPoint()
def loadCheckPoint(self):
if not os.path.isfile('{}/Simulaciones.xlsx'.format(self.name)):
self.saveCheckPoint()
with pd.ExcelFile('{}/Simulaciones.xlsx'.format(self.name)) as xls:
self.ledger = pd.read_excel(xls, sheet_name='Historial')
self.trained = self.ledger.shape[0]
2025-03-13 17:51:13 -03:00
# with open('{}/vars.pickle'.format(self.name), 'rb') as pfile:
# self.ratio, self.state = pickle.load(pfile)
2025-03-09 04:22:15 -03:00
def saveCheckPoint(self):
with pd.ExcelWriter('{}/Simulaciones.xlsx'.format(self.name), engine='xlsxwriter') as xls:
self.ledger.to_excel(xls, sheet_name='Historial', index=False)
2025-03-13 17:51:13 -03:00
# with open('{}/vars.pickle'.format(self.name), 'wb') as pfile:
# pickle.dump((self.ratio, self.state), pfile, protocol=pickle.HIGHEST_PROTOCOL)
2025-03-09 04:22:15 -03:00
self.trained = self.ledger.shape[0]
def wrap_and_save(self):
self.logger.info("{:=^60}".format(' Saving Summary and Wrap the output in a ZipFile '))
with pd.ExcelWriter('{}/Summary.xlsx'.format(self.name) , engine='xlsxwriter') as xls:
self.get_best_models().to_excel(xls, sheet_name='Results')
with zipfile.ZipFile('{}-{}.zip'.format(self.name, self.start), 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(self.name):
for file in files:
zipf.write(os.path.join(root, file))
def row_exists(self, dataset, model):
2025-03-13 17:51:13 -03:00
search_result = self.ledger[(self.ledger["Dataset"]==dataset) & (self.ledger["Target"]==self.loader.target) & (self.ledger["Model"]==model) & (self.ledger["Ratio"]==self.ratio)].shape[0] > 0
self.logger.debug(f'Looking for {dataset}, {model}, {self.loader.target}, {self.ratio} => {search_result} {self.ledger.shape}')
return search_result
2025-03-09 04:22:15 -03:00
def model_A(self, hp):
model = Sequential()
model.add(Dense(units=hp.Int('units_input', min_value=48, max_value=56, step=8), input_dim=self.nvars, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=hp.Float('dropout_input', min_value=0.1, max_value=0.1, step=0.1)))
model.add(Dense(units=hp.Int('units_hidden', min_value=32, max_value=48, step=8), activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=hp.Float('dropout_hidden', min_value=0.4, max_value=0.4, step=0.1)))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', AUC()])
return model
2025-03-10 23:11:41 -03:00
def train_and_score_model_keras(self, X_train, X_test, Y_train, Y_test, seed, label):
2025-03-09 04:22:15 -03:00
# set_random_seed(seed)
ntrials = 6
tuner = RandomSearch(
self.get_model_train_keras,
objective='val_loss', #val_loss
# seed=seed,
max_trials=ntrials,
# executions_per_trial=1, # Número de ejecuciones por cada configuración
directory=self.name,
project_name='{}-{}'.format(label,seed))
self.logger.info("{:~^60}".format(' {}-{} '.format(label,seed)))
search_dir = "{}/keras-tuner-{}/".format(self.name,label)
os.makedirs(search_dir, exist_ok=True)
search_callback = TensorBoard(log_dir=search_dir)
early_stopping_search = EarlyStopping(monitor='val_loss', patience=13, min_delta=0.005, start_from_epoch=7, restore_best_weights=True)
2025-03-10 23:11:41 -03:00
tuner.search(X_train, Y_train, epochs=150, batch_size=10, validation_data=(X_test, Y_test), callbacks=[early_stopping_search, search_callback])
2025-03-09 04:22:15 -03:00
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
self.trained += 1
self.bar.update()
return mse, mae, rmse, optimized_model, model_params
def get_model_train(self):
return [
XGBRegressor(objective='reg:squarederror'),
]
def get_tunable_params(self, model):
if isinstance(model, XGBRegressor):
return {
2025-03-13 17:51:13 -03:00
'tree_method': ["hist"],
"n_estimators": [100, 128, 150],
'max_depth': [6, 7, 8],
'subsample': [0.5, 0.6, 0.7],
'multi_strategy': ['one_output_per_tree', 'multi_output_tree']
2025-03-09 04:22:15 -03:00
}
elif isinstance(model, RandomForestClassifier):
return {
"n_estimators": [50, 100, 200],
"max_depth": [5, 10, 15],
"max_features": [2, 5, 10] #['n', 'max_depth', 'max_features', 'max_leaf_nodes', 'max_samples', 'min_impurity_decrease', 'min_samples_leaf', 'min_samples_split', 'min_weight_fraction_leaf', 'monotonic_cst', 'n_estimators', 'n_jobs', 'oob_score', 'random_state', 'verbose', 'warm_start']
}
else:
return {}
2025-03-10 23:11:41 -03:00
def train_and_score_model(self, model, X_train, X_test, Y_train, Y_test):
2025-03-09 04:22:15 -03:00
param_dist = self.get_tunable_params(model)
2025-03-10 18:49:22 -03:00
cv = StratifiedShuffleSplit(n_splits=int(1/(2*self.ratio))+1, test_size=self.ratio, random_state=get_seed())
2025-03-09 04:22:15 -03:00
grid_search = GridSearchCV(estimator=model, param_grid=param_dist, scoring='neg_mean_squared_error', cv=cv, verbose=10, n_jobs=-1)
2025-03-10 23:11:41 -03:00
grid_search.fit(X_train, Y_train)
2025-03-09 04:22:15 -03:00
optimized_model = grid_search.best_estimator_
model_params = grid_search.best_params_
y_aux = optimized_model.predict(X_train)
2025-03-10 23:11:41 -03:00
tmse = mean_squared_error(Y_train, y_aux)
2025-03-09 04:22:15 -03:00
y_pred = optimized_model.predict(X_test)
2025-03-10 23:11:41 -03:00
mse = mean_squared_error(Y_test, y_pred)
mae = mean_absolute_error(Y_test, y_pred)
2025-03-09 04:22:15 -03:00
rmse = np.sqrt(mse)
return tmse, mse, mae, rmse, optimized_model, model_params
2025-03-13 17:51:13 -03:00
def gen_plots(self, dataset, model_id, target=None):
if isinstance(target, list):
self.loader.target_list=target
if isinstance(target, str):
self.loader.target_list= list(target)
if dataset.endswith("-conv3"):
self.loader.smooth = 'conv3'
else:
self.loader.smooth = None
self.loader.reset()
if not self.row_exists(dataset, model_id):
self.logger.error(f'No se encuentra la simulacion {dataset}, {model_id}')
return
model_file = '{}/{}/{}/{}'.format(self.name, self.loader.target, dataset, model_id )
if not os.path.isfile(model_file):
self.logger.error('No se encuentra el modelo')
return
trained_model = joblib.load(model_file)
pics_folder = '{}/{}/{}/plots'.format(self.name, self.loader.target, dataset)
os.makedirs(pics_folder, exist_ok=True)
df = self.loader.scaled_data
Y_samples = np.zeros((len(df), len(self.loader.target_list)))
for i, sample in enumerate(df):
Y_samples[i] = np.array([[df[sample]['label'][key] for key in self.loader.target_list]])
self.logger.debug(f"Y_samples.shape: {Y_samples.shape}")
target_scaler = MinMaxScaler()
Y_samples = target_scaler.fit_transform(Y_samples)
cmapx = cm.get_cmap('ocean', len(self.loader.source_channels))
cmapy = cm.get_cmap('prism', Y_samples.shape[1])
for measurament, (r, l) in self.loader.dataset['range'].items():
# df[measurament]['data'].plot(figsize=(12, 6), title=f"{measurament} Prediction")
plt.figure(figsize=(12, 6))
plt.xlabel("Time")
plt.ylabel("Sensor Readings")
plt.legend(bbox_to_anchor=(0.95, 0.5), loc="center left")
plt.vlines(x=r, ymin=0, ymax=1, colors='blue')
plt.vlines(x=l, ymin=0, ymax=1, colors='blue')
for i, channel_name in enumerate(df[measurament]['data'].columns):
plt.plot(df[measurament]['data'][channel_name], linestyle = 'dotted', color=cmapx(i))
Y_value = np.zeros((1, len(self.loader.target_list)))
Y_value[0] = np.array([[df[measurament]['label'][key] for key in self.loader.target_list]])
self.logger.debug(f"Y_value.shape: {Y_value.shape}")
self.logger.debug(f"Y_value: {Y_value}")
Y_scaled = target_scaler.transform(Y_value).reshape(1, -1)
self.logger.debug(f"Y_scaled.shape: {Y_scaled.shape}")
self.logger.debug(f"Y_scaled: {Y_scaled}")
for i, value in enumerate(Y_scaled):
plt.axhline(y=value, xmin=0, xmax=df[measurament]['data'].shape[0], color=cmapy(i), linestyle='dashed')
y_pred = trained_model.predict(df[measurament]['data'].to_numpy())
if y_pred.ndim == 2:
for i in range(y_pred.shape[0]):
plt.plot(y_pred[:, i], color=cmapy(i), linestyle='solid')
else:
plt.plot(y_pred, color=cmapy(0), linestyle='solid')
filename = os.path.join(pics_folder, f"{measurament}_{model_id}.png")
plt.savefig(filename)
self.logger.info(f"Saved plot as {filename}")
plt.close()
2025-03-09 04:22:15 -03:00
def fit(self):
2025-03-11 02:14:25 -03:00
total_train_queue = 2*int(1/self.ratio)*len(self.get_model_train())
2025-03-09 04:22:15 -03:00
self.logger.info("{:=^60}".format(f'Begin Fit {total_train_queue} Models'))
self.trained = 0
manager = enlighten.get_manager()
self.bar = manager.counter(total=total_train_queue, count=self.trained, desc='Tunning', unit='Models',
format='{desc}{desc_pad}{percentage:3.0f}%|{bar}| {count:{len_total}d}/{total:d} [{elapsed}<{eta}, {rate:.2f}{unit_pad}{unit}/s]'
)
2025-03-13 17:51:13 -03:00
discretizer = KBinsDiscretizer(n_bins=200, encode='ordinal', strategy='uniform')
gss = StratifiedGroupKFold(n_splits=int(1/self.ratio), shuffle=True, random_state=get_seed())
2025-03-09 04:22:15 -03:00
node = os.uname()[1]
2025-03-13 17:51:13 -03:00
self.loader.smooth = None
self.loader.reset()
2025-03-09 04:22:15 -03:00
X_xboost, Y_xboost, G_xboost = self.loader.load_dataset_xboost()
2025-03-13 17:51:13 -03:00
# self.logger.debug(f"X_xboost: {X_xboost.shape}")
2025-03-10 23:11:41 -03:00
self.logger.debug(f"Y_xboost: {Y_xboost.shape}")
2025-03-13 17:51:13 -03:00
# self.logger.debug(f"G_xboost: {G_xboost.shape}")
2025-03-09 04:22:15 -03:00
2025-03-13 17:51:13 -03:00
Y_discrete = discretizer.fit_transform(Y_xboost)
if Y_discrete.ndim == 2:
Y_discrete = np.sum(Y_discrete, axis=1)
# self.logger.debug(f"Y_discrete: {Y_discrete.shape}")
2025-03-09 04:22:15 -03:00
2025-03-10 19:32:46 -03:00
for i, (train_index, test_index) in enumerate(gss.split(X_xboost, Y_discrete, G_xboost)):
2025-03-11 02:14:25 -03:00
dataset = 'Tabular'
2025-03-13 17:51:13 -03:00
os.makedirs('{}/{}/{}'.format(self.name, self.loader.target, dataset), exist_ok=True)
2025-03-10 23:11:41 -03:00
X_train, X_test = X_xboost[train_index], X_xboost[test_index]
Y_train, Y_test = Y_xboost[train_index], Y_xboost[test_index]
2025-03-13 17:51:13 -03:00
# self.logger.debug(f"X_train: {X_train.shape}")
# self.logger.debug(f"X_test: {X_test.shape}")
2025-03-10 23:11:41 -03:00
self.logger.debug(f"Y_train: {Y_train.shape}")
self.logger.debug(f"Y_test: {Y_test.shape}")
2025-03-09 04:22:15 -03:00
2025-03-11 02:14:25 -03:00
for model in self.get_model_train():
model_id = "{}_{}".format(type(model).__name__, i)
self.trained += 1
if self.row_exists(dataset, model_id):
self.bar.update()
continue
2025-03-13 17:51:13 -03:00
model_file = '{}/{}/{}/{}'.format(self.name, self.loader.target, dataset, model_id )
2025-03-11 02:14:25 -03:00
tmse, mse, mae, rmse, optimized_model, model_params = self.train_and_score_model(model, X_train, X_test, Y_train, Y_test)
ts = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
joblib.dump(optimized_model, model_file)
newrow = pd.DataFrame( [{"node": node,
"ts": ts,
"Dataset": dataset,
"Samples": Y_xboost.shape[0],
2025-03-13 17:51:13 -03:00
"Target": self.loader.target,
2025-03-11 02:14:25 -03:00
"Train Size": Y_train.shape[0],
"Train Ratio": Y_train.shape[0]/Y_xboost.shape[0],
"Ratio": self.ratio,
"Model": model_id,
"Params": json.dumps(model_params),
"Train mse": tmse,
"mse": mse,
"mae": mae,
"rmse": rmse
}] )
self.ledger = pd.concat([self.ledger, newrow], ignore_index=True)
self.bar.update()
self.saveCheckPoint()
2025-03-13 17:51:13 -03:00
self.loader.smooth = 'conv3'
self.loader.reset()
X_xboost, Y_xboost, G_xboost = self.loader.load_dataset_xboost()
# self.logger.debug(f"X_xboost: {X_xboost.shape}")
self.logger.debug(f"Y_xboost: {Y_xboost.shape}")
# self.logger.debug(f"G_xboost: {G_xboost.shape}")
Y_discrete = discretizer.fit_transform(Y_xboost)
if Y_discrete.ndim == 2:
Y_discrete = np.sum(Y_discrete, axis=1)
for i, (train_index, test_index) in enumerate(gss.split(X_xboost, Y_discrete, G_xboost)):
dataset = 'Tabular-conv3'
os.makedirs('{}/{}/{}'.format(self.name, self.loader.target, dataset), exist_ok=True)
X_train, X_test = X_xboost[train_index], X_xboost[test_index]
Y_train, Y_test = Y_xboost[train_index], Y_xboost[test_index]
# self.logger.debug(f"X_train: {X_train.shape}")
# self.logger.debug(f"X_test: {X_test.shape}")
self.logger.debug(f"Y_train: {Y_train.shape}")
self.logger.debug(f"Y_test: {Y_test.shape}")
2025-03-11 02:14:25 -03:00
2025-03-09 04:22:15 -03:00
for model in self.get_model_train():
model_id = "{}_{}".format(type(model).__name__, i)
self.trained += 1
if self.row_exists(dataset, model_id):
self.bar.update()
continue
2025-03-13 17:51:13 -03:00
model_file = '{}/{}/{}/{}'.format(self.name, self.loader.target, dataset, model_id )
2025-03-09 04:22:15 -03:00
2025-03-10 23:11:41 -03:00
tmse, mse, mae, rmse, optimized_model, model_params = self.train_and_score_model(model, X_train, X_test, Y_train, Y_test)
2025-03-09 04:22:15 -03:00
ts = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
joblib.dump(optimized_model, model_file)
newrow = pd.DataFrame( [{"node": node,
"ts": ts,
"Dataset": dataset,
"Samples": Y_xboost.shape[0],
2025-03-13 17:51:13 -03:00
"Target": self.loader.target,
2025-03-10 23:11:41 -03:00
"Train Size": Y_train.shape[0],
"Train Ratio": Y_train.shape[0]/Y_xboost.shape[0],
2025-03-09 04:22:15 -03:00
"Ratio": self.ratio,
"Model": model_id,
"Params": json.dumps(model_params),
"Train mse": tmse,
"mse": mse,
"mae": mae,
"rmse": rmse
}] )
self.ledger = pd.concat([self.ledger, newrow], ignore_index=True)
self.bar.update()
self.saveCheckPoint()
# if self.dnn:
# model_file = '{}/{}/DNN_{}'.format(self.name, label, seed )
# model_label = "{}".format(label)
#
2025-03-10 23:11:41 -03:00
# accuracy, specificity, recall, f1, roc_auc, optimized_model, parms = self.train_and_score_model_keras(X_train, X_test, Y_train, Y_test, seed, model_label)
2025-03-09 04:22:15 -03:00
# ts = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
#
# newrow = pd.DataFrame( [{"node": node,
# "ts": ts,
# "Dataset": model_label,
# "Model": 'DNN',
# "Params": parms,
# "Seed": seed,
# "F1": f1,
# "ROC_AUC": roc_auc
# }] )
# self.ledger = pd.concat([self.ledger, newrow], ignore_index=True)
self.bar.close()