now
parent
27cd228aea
commit
c78c0c539b
|
@ -5,7 +5,7 @@ import matplotlib.pyplot as plt
|
|||
import matplotlib
|
||||
matplotlib.rcParams['text.usetex'] = True
|
||||
|
||||
from sklearn.model_selection import StratifiedGroupKFold, StratifiedShuffleSplit, GridSearchCV
|
||||
from sklearn.model_selection import StratifiedGroupKFold, KBinsDiscretizer, StratifiedShuffleSplit, GridSearchCV
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
|
||||
|
@ -204,17 +204,18 @@ class eNoseTrainer:
|
|||
|
||||
node = os.uname()[1]
|
||||
X_xboost, Y_xboost, G_xboost = self.loader.load_dataset_xboost()
|
||||
target_scaler = MinMaxScaler()
|
||||
Y_scaled = target_scaler.fit_transform(Y_xboost)
|
||||
|
||||
discretizer = KBinsDiscretizer(n_bins=50*Y_xboost.shape[1], encode='ordinal', strategy='uniform')
|
||||
Y_discrete = discretizer.fit_transform(Y_xboost)
|
||||
|
||||
gss = StratifiedGroupKFold(n_splits=int(1/self.ratio), shuffle=True, random_state=get_seed())
|
||||
|
||||
dataset = 'Tabular'
|
||||
os.makedirs('{}/{}/{}'.format(self.name, self.target, dataset), exist_ok=True)
|
||||
|
||||
for i, (train_index, test_index) in enumerate(gss.split(X_xboost, Y_xboost, G_xboost)):
|
||||
X_train, X_test = X_xboost[train_index], Y_scaled[test_index]
|
||||
y_train, y_test = Y_xboost[train_index], Y_scaled[test_index]
|
||||
for i, (train_index, test_index) in enumerate(gss.split(X_xboost, Y_discrete, G_xboost)):
|
||||
X_train, X_test = X_xboost[train_index], Y_xboost[test_index]
|
||||
y_train, y_test = Y_xboost[train_index], Y_xboost[test_index]
|
||||
|
||||
|
||||
for model in self.get_model_train():
|
||||
|
|
Loading…
Reference in New Issue