from load_dataset import load_data, analisis_univariado from trainer import BinaryTuner import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore") _, dms2, dms3, _ = load_data() resultados = analisis_univariado(dms2.dropna(), target="MODY2_label", continuas=['edad diag', 'IMC', 'glu ayu', 'glu 120','A1c'], discretas=['sexo', 'diabetes_familia']) print(resultados) # mody2 = BinaryTuner(dms2, 'MODY2_label', seeds=[231964], test_size=0.2) # mody2.fit() # mody2.explain_model('GaussianNB', 'fulldataset-oversampled-mice', 231964) # mody2.wrap_and_save() # # # mody3 = BinaryTuner(dms3, 'MODY3_label', seeds=[536202], test_size=0.2) # mody3.fit() # mody3.explain_model('RandomForestClassifier', 'fulldataset-original-mice', 536202) # mody3.wrap_and_save()