diff --git a/load_dataset.py b/load_dataset.py index 576d039..8cfc184 100644 --- a/load_dataset.py +++ b/load_dataset.py @@ -49,9 +49,9 @@ def analisis_univariado(dfi, target=None, continuas=[], discretas=[]): t_stat, t_pval = ttest_ind(group1_values, group2_values, equal_var=False) results.append([ var, "Continua", f"Normal (p={p:.7f})", - f"Media: {mean1:.2f} ({glabel[group1]}), {mean2:.2f} ({glabel[group2]})", - f"Desviación Est.: {std1:.2f} ({glabel[group1]}), {std2:.2f} ({glabel[group2]})", - f"Test t: p={t_pval:.3f}" + f"mean: {mean1:.2f}, stdev: {std1:.2f}", + f"mean: {mean2:.2f}, stdev: {std2:.2f}", + f"t Student: p={t_pval:.3f}" ]) else: # Distribución no normal: mediana, rango intercuartil, y test Mann-Whitney @@ -60,8 +60,8 @@ def analisis_univariado(dfi, target=None, continuas=[], discretas=[]): mw_stat, mw_pval = mannwhitneyu(group1_values, group2_values) results.append([ var, "Continua", f"No Normal (p={p:.7f})", - f"Mediana: {median1:.2f} ({glabel[group1]}), {median2:.2f} ({glabel[group2]})", - f"RIC: {iqr1:.2f} ({glabel[group1]}), {iqr2:.2f} ({glabel[group2]})", + f"Mediana: {median1:.2f}, RIC: {iqr1:.2f}", + f"Mediana: {median2:.2f}, RIC: {iqr2:.2f}", f"Mann-Whitney: p={mw_pval:.3f}" ]) @@ -83,13 +83,13 @@ def analisis_univariado(dfi, target=None, continuas=[], discretas=[]): results.append([ var, "Discreta", "N/A", f"Frecuencias: {freq_table.values}", - f"Porcentajes: {percentages.values}", + f"Porcentajes: {percentages.values:.1f}%", test_result ]) # Crear DataFrame con los resultados results_df = pd.DataFrame(results, columns=[ - "Variable", "Tipo", "Shapiro-Wilk", "Medidas descriptivas", "Estadísticas", "Resultados Prueba" + "Variable", "Tipo", "Shapiro-Wilk", glabel[group1], glabel[group2], "Comparación" ]) return results_df