diff --git a/trainer.py b/trainer.py index 92d4ed9..db53208 100644 --- a/trainer.py +++ b/trainer.py @@ -645,14 +645,15 @@ class BinaryTuner: # expected_value = expected_value[1] # shap_values = explainer.shap_values(X_test)[1] self.logger.info("Columns: {}".format(Xbase.columns)) - eng_columns = ['sex', 'family hist', 'age diag', 'BMI', 'base glu', 'glu 120','HbA1c'] +# eng_columns = ['sex', 'family hist', 'age diag', 'BMI', 'base glu', 'glu 120','HbA1c'] + esp_columns = ['sexo', 'hist fam', 'edad diag', 'IMC', 'glu ayu', 'glu 120','A1c'] explainer = shap.Explainer(model.predict, X_train, seed=seed) shap_values = explainer(X_model) exp = shap.Explanation(shap_values, data=X_model, - feature_names=eng_columns) + feature_names=esp_columns) # # shap.plots.initjs() @@ -661,6 +662,7 @@ class BinaryTuner: # shap.plots.force(exp.base_values[0], exp.values[0, :], feature_names=Xbase.columns, matplotlib=True, show=False) # shap.plots.force(expected_values[0], shap_values.values, Xbase.columns , show=False) plt.title(r"{0}".format(modelname)) + plt.ylabel("Respuesta del Modelo: 0 Negativo, 1 Positivo") plt.savefig("{}/shap_{}_{}_{}.png".format(self.name, modelname, dataset, seed),dpi=150, bbox_inches='tight') plt.close()