diff --git a/trainer.py b/trainer.py index db53208..c2989f3 100644 --- a/trainer.py +++ b/trainer.py @@ -645,19 +645,19 @@ class BinaryTuner: # expected_value = expected_value[1] # shap_values = explainer.shap_values(X_test)[1] self.logger.info("Columns: {}".format(Xbase.columns)) -# eng_columns = ['sex', 'family hist', 'age diag', 'BMI', 'base glu', 'glu 120','HbA1c'] - esp_columns = ['sexo', 'hist fam', 'edad diag', 'IMC', 'glu ayu', 'glu 120','A1c'] +# label_columns = ['sex', 'family hist', 'age diag', 'BMI', 'base glu', 'glu 120','HbA1c'] + label_columns = ['sexo', 'hist fam', 'edad diag', 'IMC', 'glu ayu', 'glu 120','A1c'] explainer = shap.Explainer(model.predict, X_train, seed=seed) shap_values = explainer(X_model) exp = shap.Explanation(shap_values, data=X_model, - feature_names=esp_columns) + feature_names=label_columns) # # shap.plots.initjs() - shap.plots.decision(exp.base_values[0], exp.values, features=eng_columns, show=False) + shap.plots.decision(exp.base_values[0], exp.values, features=label_columns, show=False) # shap.plots.force(exp.base_values, exp.values, feature_names=Xbase.columns, show=False) # shap.plots.force(exp.base_values[0], exp.values[0, :], feature_names=Xbase.columns, matplotlib=True, show=False) # shap.plots.force(expected_values[0], shap_values.values, Xbase.columns , show=False) @@ -671,7 +671,7 @@ class BinaryTuner: exp = shap.Explanation(shap_values, data=X_explain, - feature_names=eng_columns) + feature_names=label_columns) for i in range(5): shap.plots.waterfall(exp[i], show=False)