from LoaderClass import GasSensorDataLoader from TrainerClass import eNoseTrainer import warnings warnings.filterwarnings("ignore") source_channels=["MQ 8", "MQ 9", "MQ 135", "TGS 813", "TGS 821", "TGS 2600", "TGS 2602", "TGS 2611-0", "TGS 2612", "TGS 2620"] target_variables=['C2H2', 'CH4', 'C3H6', 'CO', 'C2H6', 'C3H8', 'C2H4', 'H2', 'O2'] eNoseLoader = GasSensorDataLoader("enose_dataset", threshold=0.85, source_channels=source_channels, target_list=target_variables, debug=True) # Mostrar los dataset originales eNoseLoader.smooth = None eNoseLoader.reset() eNoseLoader.plotRawdata() eNoseLoader.plotScaledBoundaries() eNoseLoader.smooth = 'conv3' eNoseLoader.reset() eNoseLoader.plotScaledBoundaries() # Carga el Entrenador eNose = eNoseTrainer(eNoseLoader, test_size=0.2, debug=False) # Entrenar los modelos # eNoseLoader.target_list=['H2', 'C2H2', 'CH4', 'C2H4', 'C2H6',] # eNose.fit() # eNoseLoader.target_list=['H2',] # eNose.fit()| # eNoseLoader.target_list=['C2H2',] # eNose.fit() # eNoseLoader.target_list=['CH4',] # eNose.fit() # eNoseLoader.target_list=['C2H4',] # eNose.fit() # eNoseLoader.target_list=['C2H6',] # eNose.fit() # eNose.wrap_and_save() # Grafica las predicciones eNose.gen_plots('Tabular','XGBRegressor_3', target=['H2', 'C2H2', 'CH4', 'C2H4', 'C2H6',]) #eNose.gen_plots('Tabular-conv3','XGBRegressor_4', target=['H2',]) eNose.gen_plots('Conv1D-w32-conv3','Conv1D_v1_1', target=['H2','C2H2', 'CH4', 'C2H4', 'C2H6',]) # eNose.gen_plots('Conv1D-w32-conv3','Conv1D_v1_2', target=['H2',]) #eNose.gen_plots('Conv1D-w32','Conv1D_v1_3', target=['H2', 'C2H2', 'CH4', 'C2H4', 'C2H6',]) # eNoseLoader.target_list=['H2', 'C2H2', 'CH4', 'C2H4', 'C2H6',] # eNose.gen_plots('Tabular','XGBRegressor_1') # # eNoseLoader.target_list=['H2', 'C2H2', 'CH4', 'C2H4', 'C2H6',] # eNose.gen_plots('Tabular-conv3','XGBRegressor_0') # eNoseLoader.target_list=['H2',] # eNose.gen_plots('Tabular-conv3','XGBRegressor_0')