another
parent
7852773203
commit
a3a4bd9238
|
@ -306,6 +306,33 @@ class GasSensorDataLoader:
|
||||||
|
|
||||||
return self.dataset[ws]
|
return self.dataset[ws]
|
||||||
|
|
||||||
|
|
||||||
|
def create_conv1d_dataset(self, measurament, r, l, window):
|
||||||
|
|
||||||
|
X_data = self.scaled_data[measurament]['data'].iloc[r:l]
|
||||||
|
Y_value = np.array([[self.scaled_data[measurament]['label'][key] for key in self.target_list]])
|
||||||
|
G_value = self.scaled_data[measurament]['sampleId']
|
||||||
|
|
||||||
|
total_samples = X_data.shape[0] - window + 1
|
||||||
|
sample_size = self.min_sample - window + 1
|
||||||
|
|
||||||
|
if sample_size > total_samples:
|
||||||
|
self.logger.warn(f"sample_size ({sample_size}) exceeds available samples ({total_samples}). Using available samples.")
|
||||||
|
sample_size = total_samples
|
||||||
|
|
||||||
|
random_indices = np.random.choice(total_samples, size=sample_size, replace=False)
|
||||||
|
g_sample = np.zeros((sample_size, 1))
|
||||||
|
y_sample = np.zeros((sample_size, self.target_len))
|
||||||
|
x_samples = np.zeros((sample_size, window, self.data_channels))
|
||||||
|
|
||||||
|
|
||||||
|
for i, index in enumerate(random_indices):
|
||||||
|
x_samples[i] = X_data.iloc[index:index + window].values
|
||||||
|
y_sample[i] = Y_value
|
||||||
|
g_sample[i] = G_value
|
||||||
|
|
||||||
|
return x_samples, y_sample, g_sample
|
||||||
|
|
||||||
def load_dataset_xboost(self):
|
def load_dataset_xboost(self):
|
||||||
|
|
||||||
self.logger.info(f"Requested sample with threshold {self.threshold} for xboost")
|
self.logger.info(f"Requested sample with threshold {self.threshold} for xboost")
|
||||||
|
@ -381,32 +408,6 @@ class GasSensorDataLoader:
|
||||||
|
|
||||||
return x_samples, y_sample, g_sample
|
return x_samples, y_sample, g_sample
|
||||||
|
|
||||||
def create_conv1d_dataset(self, measurament, r, l, window):
|
|
||||||
|
|
||||||
X_data = self.scaled_data[measurament]['data'].iloc[r:l]
|
|
||||||
Y_value = np.array([[self.scaled_data[measurament]['label'][key] for key in self.target_list]])
|
|
||||||
G_value = self.scaled_data[measurament]['sampleId']
|
|
||||||
|
|
||||||
total_samples = X_data.shape[0] - window + 1
|
|
||||||
sample_size = self.min_sample - window + 1
|
|
||||||
|
|
||||||
if sample_size > total_samples:
|
|
||||||
self.logger.warn(f"sample_size ({sample_size}) exceeds available samples ({total_samples}). Using available samples.")
|
|
||||||
sample_size = total_samples
|
|
||||||
|
|
||||||
random_indices = np.random.choice(total_samples, size=sample_size, replace=False)
|
|
||||||
g_sample = np.zeros((sample_size, 1))
|
|
||||||
y_sample = np.zeros((sample_size, self.target_len))
|
|
||||||
x_samples = np.zeros((sample_size, window, self.data_channels))
|
|
||||||
|
|
||||||
|
|
||||||
for i, index in enumerate(random_indices):
|
|
||||||
x_samples[i] = X_data.iloc[index:index + window].values
|
|
||||||
y_sample[i] = Y_value
|
|
||||||
g_sample[i] = G_value
|
|
||||||
|
|
||||||
|
|
||||||
return x_samples, y_sample, g_sample
|
|
||||||
|
|
||||||
def stats(self):
|
def stats(self):
|
||||||
channel_columns = {}
|
channel_columns = {}
|
||||||
|
|
Loading…
Reference in New Issue