main
parent
6af8ab89e4
commit
70aa3e905d
|
@ -44,7 +44,7 @@ def get_seed():
|
|||
|
||||
class eNoseTrainer:
|
||||
def __init__(self, loader, test_size=0.2, debug=False):
|
||||
self.ledger = pd.DataFrame(columns=["node", "ts", "Dataset", "Samples", "Target", "Train Size", "Train Ratio", "Model", "Params", "Ratio", "Train mse", "mse", "mae", "rmse"])
|
||||
self.ledger = pd.DataFrame(columns=["node", "ts", "Dataset", "Samples", "Target", "Train Size", "Train Ratio", "Model", "Params", "Ratio", "Train mse", "mse", "mae", "rmse", "num_params"])
|
||||
self.loader = loader
|
||||
self.name = self.loader.label_file
|
||||
self.state = dict()
|
||||
|
@ -179,8 +179,8 @@ class eNoseTrainer:
|
|||
|
||||
Y_pred = model.predict(X_test)
|
||||
mse = mean_squared_error(Y_test, Y_pred)
|
||||
num_params = model.count_params() # Get number of weights in the model
|
||||
trial.set_user_attr("num_params", num_params) # Store it in the trial object
|
||||
# num_params = model.count_params() # Get number of weights in the model
|
||||
# trial.set_user_attr("num_params", num_params) # Store it in the trial object
|
||||
|
||||
return mse
|
||||
|
||||
|
@ -371,7 +371,8 @@ class eNoseTrainer:
|
|||
"Train mse": tmse,
|
||||
"mse": mse,
|
||||
"mae": mae,
|
||||
"rmse": rmse
|
||||
"rmse": rmse,
|
||||
"num_params": sum(t.count("\n") for t in optimized_model.get_booster().get_dump())
|
||||
}] )
|
||||
self.ledger = pd.concat([self.ledger, newrow], ignore_index=True)
|
||||
self.bar.update()
|
||||
|
@ -428,7 +429,8 @@ class eNoseTrainer:
|
|||
"Train mse": tmse,
|
||||
"mse": mse,
|
||||
"mae": mae,
|
||||
"rmse": rmse
|
||||
"rmse": rmse,
|
||||
"num_params": sum(t.count("\n") for t in optimized_model.get_booster().get_dump())
|
||||
}] )
|
||||
self.ledger = pd.concat([self.ledger, newrow], ignore_index=True)
|
||||
self.bar.update()
|
||||
|
@ -481,7 +483,7 @@ class eNoseTrainer:
|
|||
for trial in study.trials:
|
||||
trial_info = trial.params.copy()
|
||||
trial_info['mse'] = trial.value
|
||||
trial_info['num_params'] = trial.user_attrs.get("num_params", 0)
|
||||
# trial_info['num_params'] = trial.user_attrs.get("num_params", 0)
|
||||
trials_data.append(trial_info)
|
||||
|
||||
df = pd.DataFrame(trials_data)
|
||||
|
@ -508,17 +510,18 @@ class eNoseTrainer:
|
|||
newrow = pd.DataFrame( [{"node": node,
|
||||
"ts": ts,
|
||||
"Dataset": dataset,
|
||||
"Samples": Y_xboost.shape[0],
|
||||
"Samples": Y_conv1d.shape[0],
|
||||
"Target": self.loader.target,
|
||||
"Train Size": Y_train.shape[0],
|
||||
"Train Ratio": Y_train.shape[0]/Y_xboost.shape[0],
|
||||
"Train Ratio": Y_train.shape[0]/Y_conv1d.shape[0],
|
||||
"Ratio": self.ratio,
|
||||
"Model": model_id,
|
||||
"Params": json.dumps(study.best_params),
|
||||
"Train mse": mse_train,
|
||||
"mse": mse_test,
|
||||
"mae": mae_test,
|
||||
"rmse": rmse_test
|
||||
"rmse": rmse_test,
|
||||
"num_params": best_model.count_params()
|
||||
}] )
|
||||
self.ledger = pd.concat([self.ledger, newrow], ignore_index=True)
|
||||
self.bar.update()
|
||||
|
@ -572,7 +575,7 @@ class eNoseTrainer:
|
|||
for trial in study.trials:
|
||||
trial_info = trial.params.copy()
|
||||
trial_info['mse'] = trial.value
|
||||
trial_info['num_params'] = trial.user_attrs.get("num_params", 0)
|
||||
# trial_info['num_params'] = trial.user_attrs.get("num_params", 0)
|
||||
trials_data.append(trial_info)
|
||||
|
||||
df = pd.DataFrame(trials_data)
|
||||
|
@ -599,17 +602,18 @@ class eNoseTrainer:
|
|||
newrow = pd.DataFrame( [{"node": node,
|
||||
"ts": ts,
|
||||
"Dataset": dataset,
|
||||
"Samples": Y_xboost.shape[0],
|
||||
"Samples": Y_conv1d.shape[0],
|
||||
"Target": self.loader.target,
|
||||
"Train Size": Y_train.shape[0],
|
||||
"Train Ratio": Y_train.shape[0]/Y_xboost.shape[0],
|
||||
"Train Ratio": Y_train.shape[0]/Y_conv1d.shape[0],
|
||||
"Ratio": self.ratio,
|
||||
"Model": model_id,
|
||||
"Params": json.dumps(study.best_params),
|
||||
"Train mse": mse_train,
|
||||
"mse": mse_test,
|
||||
"mae": mae_test,
|
||||
"rmse": rmse_test
|
||||
"rmse": rmse_test,
|
||||
"num_params": best_model.count_params()
|
||||
}] )
|
||||
|
||||
self.ledger = pd.concat([self.ledger, newrow], ignore_index=True)
|
||||
|
|
Loading…
Reference in New Issue