diff --git a/TrainerClass.py b/TrainerClass.py index 36c6145..1aba047 100644 --- a/TrainerClass.py +++ b/TrainerClass.py @@ -347,7 +347,7 @@ class eNoseTrainer: plt.close() def fit(self): - windows = [128,] + windows = [64, 128, 256,] # windows = [128, 256, 384] total_train_queue = 2*int(1/self.ratio)*(len(self.get_model_train())+len(windows)) self.logger.info("{:=^60}".format(f'Begin Fit {total_train_queue} Models')) @@ -518,7 +518,7 @@ class eNoseTrainer: self.logger.debug(f"Y_train_sample: {Y_train_sample.shape}") self.logger.debug(f"Y_test_sample: {Y_test_sample.shape}") - best_model, study, best_batch_size = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=10, num_trials=10) + best_model, study, best_batch_size = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=10, num_trials=32) # Save study results to an Excel file trials_data = [] for trial in study.trials: @@ -605,7 +605,7 @@ class eNoseTrainer: self.logger.debug(f"Y_train_sample: {Y_train_sample.shape}") self.logger.debug(f"Y_test_sample: {Y_test_sample.shape}") - best_model, study, best_batch_size = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=10, num_trials=10) + best_model, study, best_batch_size = self.search_best_conv1D_v1(X_train_sample, X_test_sample, Y_train_sample, Y_test_sample, epochs=10, num_trials=32) # Save study results to an Excel file trials_data = [] for trial in study.trials: