tess
parent
15af3d3745
commit
48cecaa8cf
|
@ -199,7 +199,6 @@ class eNoseTrainer:
|
||||||
model.compile(optimizer=keras.optimizers.Adam(learning_rate=config['lr']), loss='mse')
|
model.compile(optimizer=keras.optimizers.Adam(learning_rate=config['lr']), loss='mse')
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def train_model_conv1D(config):
|
def train_model_conv1D(config):
|
||||||
X_trainc1D = ray.get(X_train_ref)
|
X_trainc1D = ray.get(X_train_ref)
|
||||||
Y_trainc1D = ray.get(Y_train_ref)
|
Y_trainc1D = ray.get(Y_train_ref)
|
||||||
|
@ -217,7 +216,7 @@ class eNoseTrainer:
|
||||||
validation_data=(X_testc1D, Y_testc1D),
|
validation_data=(X_testc1D, Y_testc1D),
|
||||||
epochs=config['epochs'],
|
epochs=config['epochs'],
|
||||||
batch_size=config['batch_size'],
|
batch_size=config['batch_size'],
|
||||||
verbose=0,
|
verbose=1,
|
||||||
callbacks=[early_stopping]
|
callbacks=[early_stopping]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -226,7 +225,7 @@ class eNoseTrainer:
|
||||||
tune.report({'mse': mse})
|
tune.report({'mse': mse})
|
||||||
|
|
||||||
config_space = {
|
config_space = {
|
||||||
'filters': tune.choice([32, 64, 128]),
|
'filters': tune.choice([16, 32, 64]),
|
||||||
'kernel_size': tune.choice([3, 5]),
|
'kernel_size': tune.choice([3, 5]),
|
||||||
'pool_size': tune.choice([2, 3]),
|
'pool_size': tune.choice([2, 3]),
|
||||||
'dense_units': tune.choice([32, 64, 128]),
|
'dense_units': tune.choice([32, 64, 128]),
|
||||||
|
@ -240,7 +239,7 @@ class eNoseTrainer:
|
||||||
# analysis = tune.run(train_model, config=config_space, num_samples=num_samples, scheduler=scheduler)
|
# analysis = tune.run(train_model, config=config_space, num_samples=num_samples, scheduler=scheduler)
|
||||||
analysis = tune.run( tune.with_parameters(train_model_conv1D), config=config_space, num_samples=num_samples, scheduler=scheduler, max_concurrent_trials=3 )
|
analysis = tune.run( tune.with_parameters(train_model_conv1D), config=config_space, num_samples=num_samples, scheduler=scheduler, max_concurrent_trials=3 )
|
||||||
best_config = analysis.get_best_config(metric='mse', mode='min')
|
best_config = analysis.get_best_config(metric='mse', mode='min')
|
||||||
best_model = build_model_conv1D(best_config, X_train_ref.shape[1:], Y_train_ref.shape[1])
|
best_model = build_model_conv1D(best_config, X_train_orig.shape[1:], Y_train_orig.shape[1])
|
||||||
|
|
||||||
|
|
||||||
ray.internal.free([X_train_ref, Y_train_ref, X_test_ref, Y_test_ref])
|
ray.internal.free([X_train_ref, Y_train_ref, X_test_ref, Y_test_ref])
|
||||||
|
|
Loading…
Reference in New Issue